

DICE/DWF SPECIFICATION

RH1498

10MHz, 6V/µs Rail-to-Rail Input and Output Precision C-Load Op Amp

117mils × 82mils, 12mils thick. Backside (substrate) is an alloyed gold layer. Connect backside to V⁺.

PAD FUNCTION

- 1. OUTPUT A
- 2. –INA
- 3. +INA
- 4. V
- 5. +INB
- 6. –INB 7. OUTPUT B
- Q \/+

DIE CROSS REFERENCE

LTC Finished	Order DICE CANDIDATE
Part Number	Part Number Below
RH1498	RH1498DICE
RH1498	RH1498DWF*

Please refer to LTC standard product data sheet for other applicable product information.

(T), LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

DICE/DWF ELECTRICAL TEST LIMITS (Pre-Irradiation) $V_S = \pm 15V$; $V_{CM} = V_{OUT} = 0V$, $T_A = 25^{\circ}C$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNITS
V _{OS}	Input Offset Voltage	V _{CM} = V ⁺ , V ⁻		800	μV
	Input Offset Voltage Match (Channel-to-Channel) (Note 1)	V _{CM} = V ⁺ to V ⁻		1400	μV
I _B	Input Bias Current	$V_{CM} = V^+$ $V_{CM} = V^-$	0 -715	715 0	nA nA
	Input Bias Current Match (Channel-to-Channel) (Note 1)	$V_{CM} = V^+, V^-$	0	120	nA
I _{OS}	Input Offset Current	V _{CM} = V ⁺ , V ⁻		70	nA
A _{VOL}	Large-Signal Voltage Gain	$V_0 = -14.5V$ to 14.5V, R1 = 10k $V_0 = -10V$ to 10V, R1 = 2k	1000 500		V/mV V/mV
CMRR	Common Mode Rejection Ratio	V _{CM} = V ⁺ to V ⁻	90		dB
	CMRR Match (Channel-to-Channel) (Note 1)	V _{CM} = V ⁺ to V ⁻	84		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 2V$ to $\pm 16V$	90		dB
	PSRR Match (Channel-to-Channel) (Note 1)	$V_S = \pm 2V$ to $\pm 16V$	83		dB
V _{OL}	Output Voltage Swing (Low) (Note 2)	No Load I _{SINK} = 1mA I _{SINK} = 10mA		30 100 500	mV mV mV

^{*}DWF = DICE in wafer form.

RH1498

DICE/DUF ELECTRICAL TEST LIMITS (Pre-Irradiation) $V_S = \pm 15V$; $V_{CM} = V_{OUT} = 0V$, $T_A = 25^{\circ}C$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNITS
V _{OH}	Output Voltage Swing (High) (Note 2)	No Load I _{SINK} = 1 mA I _{SINK} = 10mA		10 150 800	mV mV mV
I _{SC}	Short-Circuit Current		±15		mA
Is	Supply Current per Amplifier			2.5	mA
GBW	Gain-Bandwidth Product	f = 100kHz	6.8		MHz
SR	Slew Rate	$A_V = -1$, $R_L = 2k$ $V_0 = \pm 10V$, Measure at $V_0 = \pm 5V$	3.5		V/µs

DICE/DWF ELECTRICAL TEST LIMITS (Pre-Irradiation) $V_S = 3V$, 5V; $V_{CM} = V_{OUT} = Half Supply$, $T_A = 25^{\circ}C$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNITS
V _{OS}	Input Offset Voltage	V _{CM} = V ⁺ , V ⁻		800	μV
	Input Offset Voltage Match (Channel-to-Channel) (Note 1)	V _{CM} = V ⁺ to V ⁻		1400	μV
I _B	Input Bias Current	$V_{CM} = V^+$ $V_{CM} = V^-$	0 -650	650 0	nA nA
	Input Bias Current Match (Channel-to-Channel) (Note 1)	V _{CM} = V ⁺ , V ⁻	0	100	nA
I _{OS}	Input Offset Current	V _{CM} = V ⁺ , V ⁻		65	nA
A _{VOL}	Large-Signal Voltage Gain	V _S = 5V, V ₀ = 75mV to 4.8V, R1 = 10k V _S = 3V, V ₀ = 75mV to 2.8V, R1 = 10k	600 500		V/mV V/mV
CMRR	Common Mode Rejection Ratio	V _S = 5V, V _{CM} = V ⁺ to V ⁻ V _S = 3V, V _{CM} = V ⁺ to V ⁻	76 72		dB dB
	CMRR Match (Channel-to-Channel) (Note 1)	V _S = 5V, V _{CM} = V ⁺ to V ⁻ V _S = 3V, V _{CM} = V ⁺ to V ⁻	75 70		dB dB
PSRR	Power Supply Rejection Ratio	V _S = 2.2V to 12V	88		dB
	PSRR Match (Channel-to-Channel) (Note 1)	V _S = ±2V to ±16V	82		dB
V _{0L}	Output Voltage Swing (Low) (Note 2)	No Load SINK = 1mA SINK = 2.5mA		30 100 200	mV mV mV
V _{OH}	Output Voltage Swing (High) (Note 2)	No Load SINK = 1mA SINK = 2.5mA		10 150 250	mV mV mV
I _{SC}	Short-Circuit Current		±15		mA
I_S	Supply Current per Amplifier			2.2	mA

Note 1: Matching parameters are the difference between amplifiers A and B.

Note 2: Output voltage swings are measured between the output and power supply rails.

Wafer level testing is performed per the indicated specifications for dice. Considerable differences in performance can often be observed for dice versus packaged units due to the influences of packaging and assembly on certain devices and/or parameters. Please consult factory for more information on dice performance and lot qualifications via lot sampling test procedures.

Dice data sheet subject to change. Please consult factory for current revision in production.

I.D.No. 66-13-3415